
Bethe - Peierls approximation for the 2D random Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 1381

(http://iopscience.iop.org/0305-4470/29/7/011)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 1381–1395. Printed in the UK

Bethe–Peierls approximation for the2D random Ising model
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Abstract. The partition function of the2D Ising model with random nearest-neighbour coupling
is expressed in the dual lattice made of square plaquettes. The dual model is solved in the mean
field and in different types of Bethe–Peierls approximations, using the replica method.

1. Introduction

The application of methods of mean-field type to Ising models allows one to obtain very
accurate approximations of the thermodynamic quantities. However, in the presence of
quenched disorder this approach is difficult to implement. In this paper, we show that
rather good results can be obtained after performing a duality transformation of the Ising
model with random nearest-neighbour coupling that assumes the valuesJij = ±1 with
equal probability. The model is thus defined on a dual lattice where the spin variables
are attached to the square plaquettes. The advantage is that the quadratic term of the dual
Hamiltonian has constant coefficients instead of random ones. It is therefore possible to use
the standard methods of the mean field to estimate the quenched free energy. Our results
can be generalized to higher dimensions, although the approximations become rougher,
because the number of plaquette spins over the number of interaction links increases with
the dimensionality [1]. In particular, we obtain an extremely good estimate of the ground-
state energy of the random Ising model, by applying the Bethe–Peierls approximation where
part of the short-range order is taken into account.

In section 1, we introduce the dual lattice made of elementary square plaquettes. On
this lattice the partition function can be expressed as a function of the inverse temperature
β̃ = − 1

2 ln tanh(1/T ) whereT = β−1 is the temperature of the original lattice. In section 2,
we apply the mean-field approximation to the dual model, using the replica method. In
section 3, we introduce the Bethe–Peierls approximation. This allows us to obtain a
very precise estimate of the ground-state energy of the two-dimensional Ising model with
random coupling. In section 4, we show that it is possible to improve the Bethe–Peierls
approximation by introducing an interaction between different replicas. In section 5, the
reader will find some remarks and conclusions.
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0305-4470/96/071381+15$19.50c© 1996 IOP Publishing Ltd 1381



1382 G Paladin and M Serva

2. Duality transformation

The partition function of the Ising models on a lattice ofN sites with nearest-neighbour
couplingsJij which are independent identically distributed random variables, in the absence
of an external magnetic field, is

ZN(β, {Jij }) =
∑
{σ }

∏
(i,j)

exp(βJijσiσj ) (1)

where the sum runs over the 2N spin configurations{σ }, and the product over the 2N
nearest-neighbour sites(i, j). One is interested in computing the quenched free energy

f = − lim
N→∞

1

βN
lnZN (2)

whereA indicates the average of an observableA over the distribution of the random
coupling. The quenched free energy is a self-averaging quantity, i.e. it is obtained in the
thermodynamic limit for almost all realizations of disorder [2].

On the other hand, it is trivial to compute the so-called annealed free energy

fa = − lim
N→∞

1

βN
lnZ (3)

corresponding to the free energy of a system where the random coupling is not quenched
but can thermalize with a relaxation time comparable to that of the spin variables. In our
model, where the couplings are independent dichotomic random variablesJij = ±1 with
equal probability, one has

fa = −β−1 ln(2 cosh2 β ) . (4)

However,fa is a very poor approximation of the quenched free energy, and is not able to
capture the qualitative features of the model.

In order to estimate (1), it is convenient to use the link variablexij = σi σj , since
only terms corresponding to products of the variablesxij on closed loops survive after
summing over the spin configurations: on every closed loop of the lattice

∏
xij = 1, while∏

xij = σa σb for a path from sitea to site b. A moment of reflection shows that it is
sufficient to fix

∏
xij = 1 on the elementary square plaquettesP to automatically fix it on

all the closed loops. The partition function thus becomes

ZN(β, {Jij }) =
∑
{xij }

Np∏
i=1

1 + x̃i

2

∏
(i,j)

eβJij xij (5)

where the number of plaquettes is

Np = N

and we have introduced the plaquette variablex̃i = ∏
Pi xij .

For dichotomic random couplingJij = ±1 with equal probability, the free energy of
the model is invariant under the gauge transformationxij → Jij xij , so that one has

ZN =
∑
{xij }

N∏
i=1

1 + x̃i J̃i

2

∏
(i,j)

eβxij (6)
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where J̃i = ∏
Pi Jij is again a dichotomic random variable (the ‘frustration’ [3] of the

plaquettePi). It is worth remarking that (6) gives the partition function in terms of a sum
over the 22N configurations of the independent random variablesxij = ±1 with probability

pij = eβxij

2 coshβ
. (7)

In this section we shall indicate the average of an observableA over such a normalized
weight by

〈A〉 ≡
∑
{xij }

∏
(i,j)

pij A

e.g. one has〈xij 〉 = tanhβ and 〈̃xi〉 = tanh4 β. With such a notation, the partition function
assumes the compact form

ZN = 2N cosh2N(β)

〈 N∏
i=1

(1 + x̃i J̃i )

〉
. (8)

In order to estimate the average in (8), let us introduce the dual lattice [4] where the sites are
located at the centres of each square of the original lattice. A dual-spin variable is attached
to each square plaquette and can assume only the valuesσ̃i = ±1 with equal probability,
so that one has the identity

1 + x̃i J̃i =
∑
σ̃i=±1

(̃xi J̃i)
(1+σ̃i )/2. (9)

Since there is a one-to-one correspondence between links on the original and on the dual
lattice, we can estimate the link average noting that〈 N∏

i=1

x̃
(1+σ̃i )/2
i

〉
=

〈 ∏
(i,j)

x
(1+σ̃i )/2+(1+σ̃j )/2
ij

〉
=

∏
(i,j)

(tanhβ)(1−σ̃i σ̃j )/2 . (10)

The last equality in (10) follows from the fact that

x
(1+σ̃i )/2+(1+σ̃j )/2
ij =

{ 〈xij 〉 = tanhβ if σ̃i 6= σ̃j

1 if σ̃i = σ̃j .
(11)

Inserting (10) and (9) into (8) one has

ZN = 2N cosh2N(β) e−N 2β̃
∑
{̃σ }

N∏
i=1

J̃
(1+σ̃i )/2
i

∏
(i,j)

eβ̃ σ̃i σ̃j (12)

where we have introduced the variable

β̃ = − 1
2 ln tanhβ (13)

which is the inverse temperature of the dual model vanishing as e−2β when the temperature
T = β−1 → 0. The quenched free energy (2) thus becomes

− β f (β) = ln sinh(2β)− β̃f̃ (β̃) (14)
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wheref̃ is the free energy of the dual model, defined as

f̃ (β̃) = − lim
N→∞

1

β̃N
ln ZN (15)

in terms of the partition function

ZN =
∑
{̃σi }

eβ̃
∑

(i,j) σ̃i σ̃j

N∏
i=1

J̃
(1+σ̃i )/2
i . (16)

From equation (16) the Hamiltonian of the dual model can be defined via the relation
ZNp = ∑

{̃σ } e−β̃H , as

H = −
∑
(i,j)

σ̃i σ̃j −
Np∑
i=1

ln(J̃i)
(1 + σ̃i)

2β̃
. (17)

Let us stress that the quadratic term of the dual Hamiltonian is independent of the random
coupling and the randomness enters via a random complex magnetic field that can assume
the two values 0 and iπ/(2β̃) with equal probability. In fact, the weight exp(−β̃ H) does
not define a standard Gibbs probability measure on the dual lattice: it defines a signed
measure, differing from that of the pure Ising model only by the presence of the random
sign related to the frustrations of the square plaquettes{J̃i}.

3. Replica trick and mean-field approximation

The introduction of the dual model allows one to apply the mean-field approximation, since
one can easily linearize the Hamiltonian (17) by neglecting fluctuations. A similar method
has been introduced in the framework of field theory in statistical systems without disorder,
such as lattice-gauge theories or spin models [5, 6].

For our purposes, it is convenient to use the replica method in order to get the quenched
free energy of the dual model as

f̃ (β̃) = − lim
n→0

lim
N→∞

1

β̃nN
ln (ZN)n . (18)

Let us thus considern non-interacting replicas of our disordered system labelled by
α = 1, . . . , n. Now, the J̃ are are independent random variables in2D. Indeed, one can
easily verify that

∏
i J̃i = ∏

i Ji becausẽJi = ±1 with equal probability. It is worth noting
that this is not true in3D, where thẽJi of theith square plaquette of a cube can be obtained as

a product of the remaining fivẽJ ’s of the cube, implying
∏

cubeJ̃k ≡ 1, so that
∏

cubeJ̃k = 1
while ( J̃k )6 = 0. In contrast, a plaquette frustratioñJi cannot be expressed as a product
of the other ones in2D. As a consequence, from (16) the partition function ofn replicas
becomes

(ZN)n =
∑
{s}

eβ̃
∑n

α=1

∑
(i,j) σ̃

(α)
i σ̃

(α)
j

N∏
i=1

n∏
α=1

J̃
(1+σ̃ (α)i )/2
i (19a)
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where the sum in (19a) runs over the 2Nn spin configurations{s} of the replicas, and we
use the compact notation:

{s} ≡ {̃σ (1)}, . . . , {̃σ (n)} .

One can easily perform the disorder average in (19a) and get

(ZN)n =
∑
{s}

eβ̃
∑

α

∑
(i,j) σ̃

(α)
i σ̃

(α)
j

N∏
i=1

1

2

(
1 + (−1)n

∏
α

σ̃
(α)
i

)
. (19b)

As the free energy is invariant under the gauge transformationσ̃
(α)
i → −σ̃ (α)i , equation (19b)

assumes the simpler form

(ZN)n =
∑
{s}

eβ̃
∑

α

∑
(i,j) σ̃

(α)
i σ̃

(α)
j

N∏
i=1

1

2

(
1 +

∏
α

σ̃
(α)
i

)
. (19c)

It is worth stressing that the above expression differs from the partition function of a
collection of n non-interacting Ising systemswithout disorderonly because of the factor∏
i (1 + ∏

α σ̃
(α)
i )/2. Such a term introduces an ‘effective’ interaction between replicas: a

configuration contributes to the annealed partition functionZn only if
∏
α σ̃

(α)
i = 1 on each

site of the dual lattice (plaquette of the original lattice).
Now we can use the mean-field approximation to estimate (19), by introducing the

magnetizations

mα = lim
N→∞

1

N

N∑
i

σ̃
(α)
i α = 1, . . . , n . (20)

Indeed, if we neglect the fluctuations, the quadratic term of (19b) can be estimated as
σ̃
(α)
i σ̃

(α)
j = m2

α so that (16) becomes

(ZN)n =
∑
{s}

eN 2β̃
∑

α m
2
α

N∏
i=1

(
1 +

∏
α

σ̃
(α)
i

)
1

2
. (21)

The mean-field solution can be found by the introduction ofn auxiliary fields81, . . . , 8n.
Using the saddle-point method, one has, in the limitN → ∞,

eN 2 β̃ m2
α ∼

∫ ∞

−∞
d8α exp

(
N 2 β̃ (2mα8α −82

α)
)
. (22)

As a consequence,(ZN)n is given by the maximum over{81, . . . , 8n} of

∑
{s}

e−N 2β̃
∑

α 8
2
α

N∏
i=1

1

2

(
1 +

∏
α

σ̃
(α)
i

)
e4β̃

∑
α 8ασ̃

(α)
i

=
∑
{s}

e−N 2β̃
∑

α 8
2
α

N∏
i

1

2

[ n∏
α

e4β̃σ̃ (α)i 8α +
n∏
α

σ̃
(α)
i e4β̃ 8ασ̃

(α)
i

]
. (23)
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Figure 1. Graphical solution of the implicit equation (25) atT = β−1 = 1 corresponding to
β̃ = 0.136. . . . The full curves are coth(8β̃8) versus8 and the straight line8 = 8.

Now, we can explicitly carry out the sum over the 2N n spin configurations in (23) and
obtain

(ZN)n = max
81,...,8n

e−2β̃N
∑n

α=18
2
α

N∏
i

1

2

( n∏
α

2 cosh(4β̃8α)+
n∏
α

2 sinh(4β̃8α)

)
. (24)

In 2D, it is commonly believed that there is no glass transition and no replica symmetry
breaking, so that we expect that the maximum of (24) is realized at the same8α = 8∗ for
all the replicas. As a consequence, using the replica trick (18), the quenched free energy in
the mean-field approximation reads as

f̃ (β̃) = −β̃−1 max
φ

(
1
2 ln(2 sinh(8 β̃8))− 2β̃ 82

)
(24)

where the maximum of (24) is realized by the value8∗, solution of the self-consistency
equation

coth(8β̃8) = 8 . (25)

The graphical solution of this implicit equation is showed in figure 1. One sees that8∗

should always be larger than unity and atβ̃ → ∞ (infinite temperatureT = β−1 limit)
8∗ = 1. It can appear rather odd that in the dual model the magnetization8∗ > 1.
This stems from the fact that the Gibbs measure exp(−β̃H) is a signed measure because
the random coupling is transformed into a complex random magnetic field in (17). From
figure 1, it is also clear that the mean-field solution does not exhibit phase transitions at
finite temperature. However, there is an essential singularity atT = 0, since inserting (24)
into (15) and (14) one sees thatf ∼ exp(1/T ) for T → 0.

It is possible to explicitly solve the self-consistency equation whenβ̃ → 0 since (25)
becomes

8∗ = (8 β̃)−1/2
(
1 + 4β̃/3 + O(β̃2)

)
. (26)
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Figure 2. Annealed free energyfa given by (4) (broken curve) and the mean-field solution
(full curve) versus temperatureT = β−1. The broken lines are the Maxwell constructions
obtained by imposing that the free energy is a monotonic non-decreasing function ofT . The
annealed solution estimates a ground-state energyE0 > −1.559; the mean-field solution gives
E0 > −1.468; the numerical result of [5] isE0 = −1.404± 0.002.

The zero-temperature energy of the mean-field solution isE0 = −1.5 while the numerical
simulations [7] giveE0 = −1.404±0.002. In figure 2, we show the free energy as a function
of T . One sees that entropy is negative at low temperature, thus indicating that the solution
is unphysical. As a consequence, a better estimate of the ground-state energy is given by
the maximum off (β), following a standard argument of Toulouse and Vannimenus [8],
and one hasE0 > maxβ f (β) = −1.468.

4. Bethe–Peierls approximation

The mean-field approximation neglects the short-range order, that can be taken into account
by the so-called Bethe–Peierls approximation [9, 10]. It is still useful to consider the model
on the dual lattice and, moreover, it is convenient to work on the internal energy

U(β) = ∂

∂β
(β f ) (27)

instead of the free energy. From equations (14) and (15) one thus has

U(β) = −2 coth(2β)− 1

sinh(2β)
U(β̃) (28)

with

U(β̃) = ∂

∂β̃
(β̃f̃ (β̃) ) ≡ lim

n→0
Un(β̃)
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wheref̃ (β̃) is given by (18) so that the internal energy ofn replicas is

Un(β̃) = (
(ZN)n

)−1 ∑
{s}
σ̃
(γ )

k σ̃
(γ )

l

N∏
i

1

2

(
1 +

n∏
α

σ̃
(α)
i

) n∏
α

eβ̃
∑

(i,j) σ̃
(α)
i σ̃

(α)
j (29)

that in the limitn → 0 givesU(β̃).
Now comes the key step. Let us sum over all the spin couples except the 4n nearest-

neighbour spins̃σ (α)1 , σ̃ (α)2 , σ̃ (α)3 , σ̃ (α)4 around then spin σ̃ (α)0 in the numerator of (29). In
order to simplify the notation, in the following we shall indicate all these 5n spins ass(5)
and the 4n lateral ones ass(4)

Noting that the prefactor(ZN)n is a constant depending onn, the expression (29)
becomes

Un(β̃) = (
(ZN)n

)−1 ∑
{s(5)}

σ̃
(γ )

k σ̃
(γ )

l 9n(s(4))
(

1
2

)5
4∏
i=0

(
1 +

n∏
α

σ̃
(α)
i

) 4∏
i=1

n∏
α

eβ̃σ̃
(α)
0 σ̃

(α)
i (30)

where9n is a function of the 4n lateral spinss(4). In practice, we are considering the 5n
free spinss(5) on replicated crosses which are interacting with the mean field generated by
the othern(N − 5) spins.

The ansatz of the Bethe–Peierls approximation consists in assuming that any function
9n of the spin configurations such as (30) might be expressed as

9n =
( n∏
α=1

4∏
i=1

eµσ̃
(α)
i

)
(ZN)n

z(n, β̃, µ)
(31)

where we have introduced the normalization factor

z(n, β̃, µ) =
∑
{s(5)}

Wn(s(5)) (32)

related to the weight of thes(5) configurations

Wn(s(5)) =
(

1

2

)5 (
1 +

n∏
α

σ̃
(α)

0

) 4∏
i=1

(
1 +

n∏
α

σ̃
(α)
i

) n∏
α

e(β̃ σ̃
(α)
0 +µ)̃σ (α)i . (33)

The parameterµ is a sort of chemical potential representing the energy cost necessary to
flip the lateral spins in the opposite direction ofσ̃0, destroying the short-range order. In fact,
the Bethe–Peierls approximation is also indicated as thequasi-chemicalapproximation.

As a consequence, the internal energy becomes

Un(β̃) = −2〈̃σ0 σ̃1〉n . (34)

Here and in the following〈A〉n indicates the average of an observableA,

〈A〉n ≡ z−1(n, β̃, µ)
∑
{s(5)}

AWn(s(5)) (35)

over the 25n configurations of the spins on the replicated crosses weighted byWn. The
chemical potentialµ depends on the replica numbern and can be determined through a



Bethe–Peierls approximation for the2D random Ising model 1389

self-consistency equation given by the requirements that the average value of the dual spin
is invariant under translations, i.e.

〈̃σ0〉n = 〈̃σi〉n i = 1, . . . ,4 α = 1, . . . , n . (36)

One is interested in the limitn → 0, as usual. In order to write the self-consistency equation
in a simpler form, it is convenient to introduce the generating function

φn(h, µ, β̃) = ln
∑
{s(5)}

Wn(s(5)) eh
∑

α σ̃
(α)
0 (37)

so that (36) corresponds to requiring

∂φ

∂h

∣∣∣∣
h=0

= 1

4

∂φ

∂µ

∣∣∣∣
h=0

(38)

whereφ is the quenched generating function,

φ(h, µ, β̃) = lim
n→0

φn

n
.

The solution of this implicit equation gives the value of the chemical potentialµ∗(β̃) as
a function of the temperature. The internal energy can then be expressed in terms of the
generating function as

U(β̃) = −1

2

∂φ

∂β̃

∣∣∣∣
h=0, µ∗(β̃)

. (39)

In order to obtain the quenched generating functionφ, we should perform some algebraic
manipulations. After performing the sum over the 24nN configurations{s(4)} in (37) we
remain with a sum over the configurationss0 ≡ σ̃

(1)
0 , . . . , σ̃

(n)

0

25 eφn =
∑
{s0}

(
1 +

∏
α

σ̃
(α)

0

)(∏
α

2 coshη(α) +
∏
α

2 sinhη(α)
)4

eh
∑

α σ̃
(α)
0

=
∑
{s0}

4∑
k=0

(
4

k

)(
1 +

∏
α

σ̃
(α)

0

) ∏
α

(
2 coshη(α)

)4−k ∏
α

(
2 sinhη(α)

)k
ehσ̃

(α)
0

=
∑
{s0}

4∑
k=0

∑
j=±1

(
4

k

) ∏
α

(̃σ
α)

0 )
(1+j)/2 (

2 coshη(α)
)4−k (

2 sinhη(α)
)k

ehσ̃
(α)
0 (40)

where we have introduced the variable

η(α) ≡ µ+ β̃ σ̃
(α)

0 (41)

for simplifying the notation. Now, the previous sum has been obtained by an annealed
average over the disorder, i.e.

4∑
k=0

∑
j=±1

2−5

(
4

k

)
Ak,j = A (42)
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where one has

Ak,j =
∑
{s0}

∏
α

(̃σ
(α)

0 )(1+j)/2(2 coshη(α)
)4−k (

2 sinhη(α)
)k

ehσ̃
(α)
0

=
(∑

{̃σ0}
σ̃
(1+j)/2
0 (2 coshη)4−k (2 sinhη)k ehσ̃0

)n
≡ (ak,j )

n (43)

with η = µ+ βσ̃0. Noting that

lim
n→0

1

n
ln an = ln a

eventually one can write the quenched generating function as

φ = 1

25

∑
j=±1

4∑
k=0

(
4

k

)
ln

∑
σ̃0=±1

ehσ̃0 σ̃
(1+j)/2
0 cosh4−k η sinhk η . (44)

Here and in the following we omit writing the constant additive term 4 ln 2 inφ. Note that
such a term disappears in the derivatives. The first sum overj in (44) can be performed
by a trick. Let us use an auxiliary spiñσ ′

0 = ±1 with equal probability so that

φ = 1

25

4∑
k=0

(
4

k

)
ln

∑
σ̃0, σ̃

′
0=±1

eh(̃σ0+σ̃ ′
0) σ̃0

(
coshη coshη′)4−k (

sinhη sinhη′)k (45)

with η′ ≡ µ+ β̃σ̃ ′
0. It is easy to realize that if̃σ0 andσ̃ ′

0 have opposite sign, the contribution
to the sum vanishes. We can limit ourselves to consider the case of equal sign, so that (45)
becomes

φ = 1

25

4∑
k=0

(
4

k

)
ln

∑
σ̃0=±1

σ̃0 e2hσ̃0 cosh2(4−k) η sinh2k η . (46)

Moreover, in the limith → 0, one has

σ̃0 e2hσ̃0 ∼ σ̃0 + 2h . (47)

It follows that 〈̃σ0〉 is

∂φ

∂h

∣∣∣∣
h=0

= 1

25

4∑
k=0

(
4

k

)
S−1
k

∑
σ̃0=±1

2 cosh2(4−k) η sinh2k η (48)

with

Sk =
∑
σ̃0=±1

σ̃0 cosh2(4−k) η sinh2k η (49)

while
∑4

i=1〈̃σi〉 is

∂φ

∂µ

∣∣∣∣
h=0

= 1

25

4∑
k=0

(
4

k

)
S−1
k

∑
σ̃0=±1

σ̃0Yk(η) (50)
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with

Yk(η) = cosh2(4−k) η sinh2k η [2(4 − k) tanhη + 2k cothη] . (51)

Inserting (45) and (46) into the self-consistency equation (38), the chemical potentialµ∗

can be obtained as a function of the dual inverse temperatureβ̃. Once we have determined
the value ofµ∗, the internal energy is given by a derivative of the generating function. In
particular, one has

U(β̃) = −1

2

∂φ

∂β̃

∣∣∣∣
h=0, µ∗(β̃)

= − 1

26

4∑
k=0

(
4

k

)
S−1
k

∑
σ̃0=±1

Yk(η) . (52)

In figure 3 we showµ∗/β̃ as a function of̃β, where one observes that for̃β → ∞ (limit of
high temperatureT of the original lattice),µ∗/β̃ → 3. This can be understood noting that
each one of the lateral free spins of the cross interacts with three other spins, so that at zero
dual temperaturẽβ−1, the energy lost in a flip is exactly equal to 3. Figure 4 illustrates the
graphical solution of (38) by plotting

lim
n→0

(
〈̃σ0〉n − 1

4

4∑
i=1

〈̃σi〉n
)

(53)

as a function ofµ at three different temperatures. The solutionµ∗ of the self-consistency
equation is given by the intersection of the function with the horizontal axes. We look
only for real solutions. At largẽβ, there exists only one solution. However, figure 4
shows that at low̃β two solutions appear, and for̃β < 0.031 there is no real positive
solution. The internal energyU given by the Bethe–Peierls approximation together with the
annealed energyUa = −2 tanh(β) and the mean-field result are plotted as function of the
temperature in figure 5. One sees that forβ̃ < 0.05, i.e.T < 0.667. . . , the energy increases

Figure 3. Chemical potentialµ∗/β̃ as a
function of the dual inverse temperaturẽβ.



1392 G Paladin and M Serva

Figure 4. The graphical solution of the
self-consistency equation (36) is given by
the intersection of (53) with the horizontal
axes. We illustrate three different cases:
β̃ = 0.1 (full curve), β̃ = 0.05 (broken
curve) andβ̃ = 0.028 (dotted curve).

Figure 5. Internal energy given by
the annealed approximation, i.e.Ua =
−2 tanhβ (broken curve), and by the
Bethe–Peierls solution (full curve)U(T )
versus temperatureT = β−1. The
dotted line is obtained by imposing that
the Bethe–Peierls internal energy is a
monotonic non-increasing function ofT .

with decreasing the temperature while the chemical potentialµ∗ decreases, indicating that
the Bethe–Peierls solution becomes unphysical. The ground-state energy can be estimated
by the minimum value assumed by the internal energy, i.e.

E0 ≈ min
β̃

U(β̃) = U(β̃ = 0.05. . .) = −1.3975.

It is extremely close to the numerical estimate of [7]E0 = −1.404± 0.002.
Finally, we want to mention that the problem remains open to understand whether, with

an appropriate ansatz of replica symmetry breaking, one can obtain a solution of the self-
consistency equation for̃β < 0.03. It is indeed well known that the mean-field approach
can give phase transitions, even when they are absent in the original model.

5. Improved Bethe–Peierls approximation

In order to improve the Bethe–Peierls approximation in the framework of the replica method,
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we introduce a second variational parameterγ , beyond the chemical potentialµ, that puts
in interaction the different replicas. In other words, we replace the (standard) ansatz (31)
with

9n =
∏
α

4∏
i=1

eµ
∑

α σ̃
(α)
i +γ ∑

α>β σ̃
(α)
i σ̃

(β)

i
(ZN)n

g(n, β̃, µ, γ )
(54)

where we have introduced the normalization factor

g(n, β̃, µ, γ ) =
∑
{s(5)}

Pn(s(5)) (55)

related to the weight of thes(5) configurations

Pn(s(5)) = Wn eγ
∑

α>β σ̃
(α)
i σ̃

(β)

i (56)

with Wn given by (33). We shall indicates the average of an observableA over this new
normalized weight by〈〈A〉〉n.

The two variational parameters are determined by the coupled self-consistency equations
obtained in the limitn → 0 by

〈〈̃σ0〉〉n = 〈〈̃σi〉〉n (57a)

〈〈̃σ (α)0 σ̃
(β)

0 〉〉n = 〈〈̃σ (α)i σ̃
(β)

i 〉〉n (57b)

with i = 1, . . . ,4 andα, β = 1, . . . , n.
The ansatz proposed here is related to a hypothesis of existence of a glassy phase. In

fact, one can apply this approximation scheme to the solution of the random-coupling Ising
model directly on the original lattice ind dimensions [11]. In this case, after performing
the limit d → ∞, one obtains the Parisi solution [2] of the Sherrington–Kirkpatrick model.

Following the same idea as in the previous section, let us introduce the generating
function

ψn(h, `, µ, γ, β̃) = ln
∑
{s(5)}

Pn(s(5))e
h

∑
α σ̃

(α)
0 +`∑

α>β σ̃
(α)
i σ̃

(β)

i (58)

so that (57a) and (57b) correspond to requiring

∂ψ

∂h

∣∣∣∣
h=0,`=0

= 1

4

∂ψ

∂µ

∣∣∣∣
h=0,`=0

(59a)

and

∂ψ

∂`

∣∣∣∣
h=0,`=0

= 1

4

∂ψ

∂γ

∣∣∣∣
h=0,`=0

(59b)

whereψ is the quenched generating function,

ψ(h,µ, γ, β̃) = lim
n→0

ψn

n
. (60)
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The solution of this implicit equation gives the valuesµ∗(β̃) and γ ∗ as functions of the
temperature. The internal energy can then be expressed in terms of the generating function
as

U(β̃) = −1

2

∂ψ

∂β̃

∣∣∣∣
h=0,`=0 , µ∗(β̃),γ ∗(β̃)

. (61)

Let us now simplify as much as possible the self-consistency equations. It is convenient
to use the standard Gaussian identity

exp

(
`
∑
α>β

σ̃
(α)

0 σ̃
(β)

0

)
= exp

(
`

2

(∑
α

σ̃
(α)

0

)2

− `n

2

)

=
∫

dx0√
2π

exp

(
−`n

2
+

√
`x0

∑
α

σ̃
(α)

0 − x2
0

2

)
(62)

in order to write the generating function as

ψn = − (4γ + `) n

2
+ ln

(
2−5

∫ 4∏
i=0

dxi√
2π

e−x2
i /2

×
∑
{s0}

(
1 +

∏
α

σ̃
(α)

0

)(∏
α

2 coshω(α)i +
∏
α

2 sinhω(α)i

)
e(h+x0

√
`)

∑
α σ̃

(α)
0

)
(63)

with

ω
(α)
i = η(α) + xi

√
γ . (64)

Using the same ‘algebraic’ strategy that in the previous section leads to (44), we obtain the
quenched generating function as

ψ = −2γ − `

2
+ 1

25

∫ 4∏
i=0

dxi√
2π

e−x2
i /2

∑
j1,j2,j3,j4=±1

× ln

( ∑
σ̃0=±1

σ̃0 e2(h+√
`x0)̃σ0

4∏
i=1

(coshωi)
1+ji (sinhωi)

1−ji
)

(65)

with

ωi = η + xi
√
γ = β̃ σ̃0 + µ+ xi

√
γ .

The constant additive term 4 ln 2 is again omitted.
By derivatingψ one has the self-consistency equations (57) forµ∗ andγ ∗ in terms of

the sum of five Gaussian integrals. A careful analytic and numerical study of these equations
might give enlightenment as to the nature of spin glasses in low-dimensional systems.
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6. Conclusions

Let us briefly summarize our main results.
(i) Formulation of the random coupling Ising model on the dual lattice made of square

plaquettes. The dual model has signed Gibbs measure as the random coupling is transformed
into a random complex magnetic field.

(ii) Application of the mean-field approximation to the two-dimensional dual model in
the framework of the replica method. We find the solution using a replica-symmetry ansatz,
obtaining a good estimate of the ground-state energy:E0 = −1.468, compared with the
numerical result of [7]E0 = −1.404± 0.002.

(iii) Application of the Bethe–Peierls approximation. It gives a very accurate estimate
of the ground-state energy (E0 = −1.3975) although it becomes unphysical below̃β = 0.05
and there is no real solution of the self-consistency equation forβ̃ < 0.03.

(iv) Improvement scheme of the Bethe–Peierls approximation by considering a second
variational parameter that puts in interaction different replicas of the dual model.

There are still many problems that remain open in our approach. As a major issue,
it would be interesting to understand whether the ansatz proposed in section 4, or other
similar assumptions, lead to a solution of the self-consistency equations of the Bethe–
Peierls approximation at low̃β, that would allow one to decide whether a transition to a
glassy phase is present at low dimension.

The dual transformation is indeed a very powerful tool for determining the critical
temperature in non-disordered systems and our method might give some results in this
direction. Last but not least, we plan to find a cluster expansion scheme that permits
improvement of the mean field in a systematic way.
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